Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Br J Pharmacol ; 179(22): 5132-5147, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35764296

RESUMO

BACKGROUND AND PURPOSE: Pulmonary arterial hypertension (PAH) is a pulmonary vasculature obstructive disease that leads to right heart failure and death. Maresin 1 is an endogenous lipid mediator known to promote inflammation resolution. However, the effect of Maresin 1 on PAH remains unclear. EXPERIMENTAL APPROACH: The serum Maresin 1 concentration was assessed using UPLC. A mouse model of PAH was established by combining the Sugen 5416 injection and hypoxia exposure. After treatment with Maresin 1, the right ventricular systolic pressure (RVSP) and right ventricular function were measured by haemodynamic measurement and echocardiography, respectively. Vascular remodelling was evaluated by histological staining. Confocal microscopy and western blot were used to test related protein expression. In vitro cell migration, proliferation and apoptosis assays were performed in primary rat pulmonary artery smooth muscle cells (PASMCs). Western blotting and siRNA transfection were used to clarify the mechanism of Maresin 1. KEY RESULTS: Endogenous serum Maresin 1 was decreased in PAH patients and mice. Maresin 1 treatment decreased RVSP and attenuated right ventricular dysfunction (RVD) in the murine PAH model. Maresin 1 reversed abnormal changes in pulmonary vascular remodelling, attenuating endothelial to mesenchymal transformation and enhancing apoptosis of α-SMA positive cells. Furthermore, Maresin 1 inhibited PASMC proliferation and promoted apoptosis by inhibiting STAT, AKT, ERK, and FoxO1 phosphorylation via LGR6. CONCLUSION AND IMPLICATIONS: Maresin 1 improved abnormal pulmonary vascular remodelling and right ventricular dysfunction in PAH mice, targeting aberrant PASMC proliferation. This suggests Maresin 1 may have a potent therapeutic effect in vascular disease.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Animais , Proliferação de Células , Ácidos Docosa-Hexaenoicos/farmacologia , Camundongos , Miócitos de Músculo Liso , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Artéria Pulmonar , RNA Interferente Pequeno/farmacologia , Ratos , Remodelação Vascular , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia
2.
Am J Physiol Heart Circ Physiol ; 322(6): H994-H1002, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35333114

RESUMO

Sex is increasingly emerging as determinant of right ventricular (RV) adaptation to abnormal loading conditions. It is unknown, however, whether sex-related differences already occur in childhood. Therefore, this study aimed to assess sex differences in a juvenile model of early RV pressure load by pulmonary artery banding (PAB) during transition from pre to postpuberty. Rat pups (n = 57, 3 wk old, 30-45 g) were subjected to PAB or sham surgery. Animals were euthanized either before or after puberty (4 and 8 wk postsurgery, respectively). Male PAB rats demonstrated failure to thrive already after 4 wk, whereas females did not. After 8 wk, female PAB rats showed less clinical symptoms of RV failure than male PAB rats. RV pressure-volume analysis demonstrated increased end-systolic elastance after 4 wk in females only, and a trend toward preserved end-diastolic elastance in female PAB rats compared with males (P = 0.055). Histology showed significantly less RV myocardial fibrosis in female compared with male PAB rats 8 wk after surgery. Myosin heavy chain 7-to-6 ratio switch and calcineurin signaling were less pronounced in female PAB rats compared with males. In this juvenile rat model of RV pressure load, female rats appeared to be less prone to clinical heart failure compared with males. This was driven by increased RV contractility before puberty, and better preservation of diastolic function with less RV myocardial fibrosis after puberty. These findings show that RV adaptation to increased loading differs between sexes already before the introduction of pubertal hormones.NEW & NOTEWORTHY In this study, we describe sex differences in our unique weanling rat model of increased RV pressure load by pulmonary artery banding. We are the first to assess temporal sex-related differences in RV adaptation during pubertal development. Female rats show superior RV function and less diastolic dysfunction and fibrosis compared with male rats. These differences are already present before puberty, indicating that the differences in RV adaptation are not only determined by sex hormones.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Direita , Animais , Feminino , Fibrose , Insuficiência Cardíaca/patologia , Ventrículos do Coração , Masculino , Ratos , Disfunção Ventricular Direita/patologia , Função Ventricular Direita , Pressão Ventricular
3.
Pediatr Blood Cancer ; 68(6): e28973, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33742492

RESUMO

Cardiac disease is the primary cause of death in sickle cell disease (SCD). Cardiac abnormalities begin in childhood and progress throughout life. Right and left ventricular (RV, LV) myocardial strain are early markers of systolic dysfunction but are not well investigated among individuals with SCD. The objectives of this review were to (1) identify all published studies that have evaluated ventricular myocardial strain, (2) summarize their values, and (3) compare findings with those obtained from controls. From search results of four electronic databases-Medline, Embase, Scopus, and Web of Science-42 potential articles were identified, of which 18 articles and 17 studies met eligibility criteria for inclusion. The evaluated studies demonstrate that RV and LV myocardial strain are generally abnormal in individuals with SCD compared with controls, despite having normal ejection/shortening fraction. Myocardial strain has been inconsistently evaluated in this population and should be considered any time an echocardiogram is performed.


Assuntos
Anemia Falciforme/patologia , Cardiomiopatias/patologia , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Direita/patologia , Adulto , Criança , Ecocardiografia , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/patologia , Humanos , Lactente , Pessoa de Meia-Idade , Volume Sistólico/fisiologia
4.
Circ Heart Fail ; 14(2): e007058, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33541093

RESUMO

BACKGROUND: Right ventricular (RV) dysfunction is a significant prognostic determinant of morbidity and mortality in pulmonary arterial hypertension (PAH). Despite the importance of RV function in PAH, the underlying molecular mechanisms of RV dysfunction secondary to PAH remain unclear. We aim to identify and compare molecular determinants of RV failure using RNA sequencing of RV tissue from 2 clinically relevant animal models of PAH. METHODS: We performed RNA sequencing on RV from rats treated with monocrotaline or Sugen with hypoxia/normoxia. PAH and RV failure were confirmed by catheterization and echocardiography. We validated the RV transcriptome results using quantitative real-time polymerase chain reaction, immunofluorescence, and Western blot. Immunohistochemistry and immunofluorescence were performed on human RV tissue from control (n=3) and PAH-induced RV failure patients (n=5). RESULTS: We identified similar transcriptomic profiles of RV from monocrotaline- and Sugen with hypoxia-induced RV failure. Pathway analysis showed genes enriched in epithelial-to-mesenchymal transition, inflammation, and metabolism. Histological staining of human RV tissue from patients with RV failure secondary to PAH revealed significant RV fibrosis and endothelial-to-mesenchymal transition, as well as elevated cellular communication network factor 2 (top gene implicated in epithelial-to-mesenchymal transition/endothelial-to-mesenchymal transition) expression in perivascular areas compared with normal RV. CONCLUSIONS: Transcriptomic signature of RV failure in monocrotaline and Sugen with hypoxia models showed similar gene expressions and biological pathways. We provide translational relevance of this transcriptomic signature using RV from patients with PAH to demonstrate evidence of epithelial-to-mesenchymal transition/endothelial-to-mesenchymal transition and protein expression of cellular communication network factor 2 (CTGF [connective tissue growth factor]). Targeting specific molecular mechanisms responsible for RV failure in monocrotaline and Sugen with hypoxia models may identify novel therapeutic strategies for PAH-associated RV failure.


Assuntos
Transição Epitelial-Mesenquimal/genética , Insuficiência Cardíaca/genética , Hipertensão Arterial Pulmonar/genética , Disfunção Ventricular Direita/genética , Remodelação Ventricular/genética , Idoso , Idoso de 80 Anos ou mais , Inibidores da Angiogênese/toxicidade , Animais , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Hipóxia , Indóis/toxicidade , Masculino , Pessoa de Meia-Idade , Monocrotalina/toxicidade , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Pirróis/toxicidade , RNA-Seq , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia
5.
Arch Toxicol ; 95(1): 179-193, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979061

RESUMO

Accidental bromine spills are common and its large industrial stores risk potential terrorist attacks. The mechanisms of bromine toxicity and effective therapeutic strategies are unknown. Our studies demonstrate that inhaled bromine causes deleterious cardiac manifestations. In this manuscript we describe mechanisms of delayed cardiac effects in the survivors of a single bromine exposure. Rats were exposed to bromine (600 ppm for 45 min) and the survivors were sacrificed at 14 or 28 days. Echocardiography, hemodynamic analysis, histology, transmission electron microscopy (TEM) and biochemical analysis of cardiac tissue were performed to assess functional, structural and molecular effects. Increases in right ventricular (RV) and left ventricular (LV) end-diastolic pressure and LV end-diastolic wall stress with increased LV fibrosis were observed. TEM images demonstrated myofibrillar loss, cytoskeletal breakdown and mitochondrial damage at both time points. Increases in cardiac troponin I (cTnI) and N-terminal pro brain natriuretic peptide (NT-proBNP) reflected myofibrillar damage and increased LV wall stress. LV shortening decreased as a function of increasing LV end-systolic wall stress and was accompanied by increased sarcoendoplasmic reticulum calcium ATPase (SERCA) inactivation and a striking dephosphorylation of phospholamban. NADPH oxidase 2 and protein phosphatase 1 were also increased. Increased circulating eosinophils and myocardial 4-hydroxynonenal content suggested increased oxidative stress as a key contributing factor to these effects. Thus, a continuous oxidative stress-induced chronic myocardial damage along with phospholamban dephosphorylation are critical for bromine-induced chronic cardiac dysfunction. These findings in our preclinical model will educate clinicians and public health personnel and provide important endpoints to evaluate therapies.


Assuntos
Bromo , Cardiomegalia/fisiopatologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Esquerda , Função Ventricular Direita , Remodelação Ventricular , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiotoxicidade , Diástole , Modelos Animais de Doenças , Fibrose , Masculino , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Miocárdio/metabolismo , Miocárdio/ultraestrutura , NADPH Oxidase 2/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Fosforilação , Proteína Fosfatase 1/metabolismo , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Sístole , Fatores de Tempo , Troponina I/metabolismo , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Direita/induzido quimicamente , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia
6.
J Cell Physiol ; 236(2): 1013-1024, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32602585

RESUMO

Right heart failure and right ventricular (RV) remodeling were the main reason for mortality of pulmonary hypertension (PH) patients. Apolipoprotein AV (ApoA5) is a key regulator of plasma triglyceride and have multifunction in several target organs. We detected decreased ApoA5 in serum of patients with PH and both in serum and RV of monocrotaline-induced PH model. Exogenously, overexpression ApoA5 by adenovirus showed protective effects on RV failure and RV fibrosis secondary to PH. In addition, in vitro experiments showed ApoA5 attenuated the activation of fibroblast induced by transforming growth factor ß1 and synthesis and secretion of extracellular matrix by inhibiting focal adhesion kinase-c-Jun N-terminal kinase-Smad3 pathway. Finally, we suggest that ApoA5 may potentially be a pivotal target for RV failure and fibrosis secondary of PH.


Assuntos
Apolipoproteína A-V/genética , Hipertensão Pulmonar/genética , Fator de Crescimento Transformador beta1/genética , Disfunção Ventricular Direita/genética , Remodelação Ventricular/genética , Animais , Ecocardiografia , Matriz Extracelular/genética , Feminino , Fibrose/sangue , Fibrose/genética , Fibrose/patologia , Proteína-Tirosina Quinases de Adesão Focal/genética , Coração/diagnóstico por imagem , Coração/fisiopatologia , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/patologia , Humanos , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Masculino , Pessoa de Meia-Idade , Ratos , Proteína Smad3/genética , Triglicerídeos/sangue , Disfunção Ventricular Direita/sangue , Disfunção Ventricular Direita/diagnóstico por imagem , Disfunção Ventricular Direita/patologia
7.
Am J Physiol Heart Circ Physiol ; 319(6): H1459-H1473, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33064565

RESUMO

Although women are more susceptible to pulmonary arterial hypertension (PAH) than men, their right ventricular (RV) function is better preserved. Estrogen receptor-α (ERα) has been identified as a likely mediator for estrogen protection in the RV. However, the role of ERα in preserving RV function and remodeling during pressure overload remains poorly understood. We hypothesized that loss of functional ERα removes female protection from adverse remodeling and is permissive for the development of a maladapted RV phenotype. Male and female rats with a loss-of-function mutation in ERα (ERαMut) and wild-type (WT) littermates underwent RV pressure overload by pulmonary artery banding (PAB). At 10 wk post-PAB, WT and ERαMut demonstrated RV hypertrophy. Analysis of RV pressure waveforms demonstrated RV-pulmonary vascular uncoupling and diastolic dysfunction in female, but not male, ERαMut PAB rats. Similarly, female, but not male, ERαMut exhibited increased RV fibrosis, comprised primarily of thick collagen fibers. There was an increased protein expression ratio of TIMP metallopeptidase inhibitor 1 (Timp1) to matrix metalloproteinase 9 (Mmp9) in female ERαMut compared with WT PAB rats, suggesting less collagen degradation. RNA-sequencing in female WT and ERαMut RV revealed kallikrein-related peptidase 10 (Klk10) and Jun Proto-Oncogene (Jun) as possible mediators of female RV protection during PAB. In summary, ERα in females is protective against RV-pulmonary vascular uncoupling, diastolic dysfunction, and fibrosis in response to pressure overload. ERα appears to be dispensable for RV adaptation in males. ERα may be a mediator of superior RV adaptation in female patients with PAH.NEW & NOTEWORTHY Using a novel loss-of-function mutation in estrogen receptor-α (ERα), we demonstrate that female, but not male, ERα mutant rats display right ventricular (RV)-vascular uncoupling, diastolic dysfunction, and fibrosis following pressure overload, indicating a sex-dependent role of ERα in protecting against adverse RV remodeling. TIMP metallopeptidase inhibitor 1 (Timp1), matrix metalloproteinase 9 (Mmp9), kallikrein-related peptidase 10 (Klk10), and Jun Proto-Oncogene (Jun) were identified as potential mediators in ERα-regulated pathways in RV pressure overload.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Hipertrofia Ventricular Direita/prevenção & controle , Miocárdio/metabolismo , Disfunção Ventricular Direita/prevenção & controle , Função Ventricular Direita , Remodelação Ventricular , Animais , Modelos Animais de Doenças , Receptor alfa de Estrogênio/genética , Feminino , Colágenos Fibrilares/metabolismo , Fibrose , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Hipertrofia Ventricular Direita/fisiopatologia , Calicreínas/genética , Calicreínas/metabolismo , Masculino , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mutação , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos Mutantes , Ratos Sprague-Dawley , Fatores Sexuais , Transdução de Sinais , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia , Disfunção Ventricular Direita/fisiopatologia
8.
J Am Heart Assoc ; 9(13): e015708, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32552157

RESUMO

BackgroundPulmonary hypertension (PH) results in increased right ventricular (RV) afterload and ventricular remodeling. Sacubitril/valsartan (sac/val) is a dual acting drug, composed of the neprilysin inhibitor sacubitril and the angiotensin receptor blocker valsartan, that has shown promising outcomes in reducing the risk of death and hospitalization for chronic systolic left ventricular heart failure. In this study, we aimed to examine if angiotensin receptor-neprilysin inhibition using sac/val attenuates RV remodeling in PH.Methods and ResultsRV pressure overload was induced in Sprague-Dawley rats via banding the main pulmonary artery. Three different cohorts of controls, placebo-treated PH, and sac/val-treated PH were studied in a 21-day treatment window. Terminal invasive hemodynamic measurements, quantitative histological analysis, biaxial mechanical testing, and constitutive modeling were employed to conduct a multiscale analysis on the effects of sac/val on RV remodeling in PH. Sac/val treatment decreased RV maximum pressures (29% improvement, P=0.002), improved RV contractile (30%, P=0.012) and relaxation (29%, P=0.043) functions, reduced RV afterload (35% improvement, P=0.016), and prevented RV-pulmonary artery uncoupling. Furthermore, sac/val attenuated RV hypertrophy (16% improvement, P=0.006) and prevented transmural reorientation of RV collagen and myofibers (P=0.011). The combined natriuresis and vasodilation resulting from sac/val led to improved RV biomechanical properties and prevented increased myofiber stiffness in PH (61% improvement, P=0.032).ConclusionsSac/val may prevent maladaptive RV remodeling in a pressure overload model via amelioration of RV pressure rise, hypertrophy, collagen, and myofiber reorientation as well as tissue stiffening both at the tissue and myofiber level.


Assuntos
Aminobutiratos/farmacologia , Antagonistas de Receptores de Angiotensina/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/prevenção & controle , Inibidores de Proteases/farmacologia , Tetrazóis/farmacologia , Disfunção Ventricular Direita/prevenção & controle , Função Ventricular Direita/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Fenômenos Biomecânicos , Compostos de Bifenilo , Colágeno/metabolismo , Modelos Animais de Doenças , Combinação de Medicamentos , Hemodinâmica/efeitos dos fármacos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Hipertrofia Ventricular Direita/fisiopatologia , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Neprilisina/antagonistas & inibidores , Ratos Sprague-Dawley , Valsartana , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia , Disfunção Ventricular Direita/fisiopatologia
10.
Cardiol Young ; 29(7): 945-953, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31287038

RESUMO

INTRODUCTION: Prematurity impacts myocardial development and may determine long-term outcomes. The objective of this study was to test the hypothesis that preterm neonates develop right ventricle dysfunction and adaptive remodelling by 32 weeks post-menstrual age that persists through 1 year corrected age. MATERIALS AND METHODS: A subset of 80 preterm infants (born <29 weeks) was selected retrospectively from a prospectively enrolled cohort and measures of right ventricle systolic function and morphology by two-dimensional echocardiography were assessed at 32 weeks post-menstrual age and at 1 year of corrected age. Comparisons were made to 50 term infants at 1 month and 1 year of age. Sub-analyses were performed in preterm-born infants with bronchopulmonary dysplasia and/or pulmonary hypertension. RESULT: In both term and preterm infants, right ventricle function and morphology increased over the first year (p < 0.01). The magnitudes of right ventricle function measures were lower in preterm-born infants at each time period (p < 0.01 for all) and right ventricle morphology indices were wider in all preterm infants by 1 year corrected age, irrespective of lung disease. Measures of a) right ventricle function were further decreased and b) morphology increased through 1 year in preterm infants with bronchopulmonary dysplasia and/or pulmonary hypertension (p < 0.01). CONCLUSION: Preterm infants exhibit abnormal right ventricle performance with remodelling at 32 weeks post-menstrual age that persists through 1 year corrected age, suggesting a less developed intrinsic myocardial function response following preterm birth. The development of bronchopulmonary dysplasia and pulmonary hypertension leave a further negative impact on right ventricle mechanics over the first year of age.


Assuntos
Displasia Broncopulmonar/complicações , Hipertensão Pulmonar/complicações , Doenças do Prematuro/patologia , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/patologia , Remodelação Ventricular , Displasia Broncopulmonar/patologia , Ecocardiografia , Feminino , Humanos , Hipertensão Pulmonar/patologia , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Doenças do Prematuro/diagnóstico por imagem , Doenças do Prematuro/etiologia , Masculino , Estudos Retrospectivos , Disfunção Ventricular Direita/diagnóstico por imagem
11.
J Am Heart Assoc ; 8(9): e010961, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31039672

RESUMO

Background Cancer therapies inhibiting PI 3Kα (phosphoinositide 3-kinase-α)-dependent growth factor signaling, including trastuzumab inhibition of HER 2 (Human Epidermal Growth Factor Receptor 2), can cause adverse effects on the heart. Direct inhibition of PI 3Kα is now in clinical trials, but the effects of PI 3Kα pathway inhibition on heart atrophy, remodeling, and function in the context of cancer therapy are not well understood. Method and Results Pharmacological PI 3Kα inhibition and heart-specific genetic deletion of p110α, the catalytic subunit of PI 3Kα, was characterized in conjunction with anthracycline (doxorubicin) treatment in female murine models. Biventricular changes in heart morphological characteristics and function were analyzed, with molecular characterization of signaling pathways. Both PI 3Kα inhibition and anthracycline therapy promoted heart atrophy and a combined effect of distinct right ventricular dilation, dysfunction, and cardiomyocyte remodeling in the absence of pulmonary arterial hypertension. Congruent findings of right ventricular dilation and dysfunction were seen with pharmacological and genetic suppression of PI 3Kα signaling when combined with doxorubicin treatment. Increased p38 mitogen-activated protein kinase activation was mechanistically linked to heart atrophy and correlated with right ventricular dysfunction in explanted failing human hearts. Conclusions PI 3Kα pathway inhibition promotes heart atrophy in mice. The right ventricle is specifically at risk for dilation and dysfunction in the setting of PI 3K inhibition in conjunction with chemotherapy. Inhibition of p38 mitogen-activated protein kinase is a proposed therapeutic target to minimize this mode of cardiotoxicity.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Coração/efeitos dos fármacos , Miocárdio/patologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Tiazóis/farmacologia , Disfunção Ventricular Direita/fisiopatologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Atrofia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/genética , Feminino , Coração/fisiopatologia , Camundongos , Disfunção Ventricular Direita/induzido quimicamente , Disfunção Ventricular Direita/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Int J Cardiol ; 287: 96-105, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31003793

RESUMO

INTRODUCTION: Right ventricular (RV) failure due to pressure load is an important determinant of clinical outcome in pulmonary hypertension, congenital heart disease and left ventricular failure. The last decades it has become clear that metabolic dysregulation is associated with the development of RV-failure. However, underlying mechanisms remain to be unraveled. Recently, disruption of intracardiac lipid content has been suggested as potential inducer of RV failure. In the present study, we used a rat model of RV-dysfunction and aimed to obtain insight in temporal changes in RV-function, -remodelling and -metabolism and relate this to RV lipid content. METHODS AND RESULTS: Male Wistar WU rats were subjected to pulmonary artery banding (n = 25) or sham surgery (n = 14) and cellular, hemodynamic and metabolic assessments took place after 2, 5 and 12 weeks. In this model RV dysfunction and remodelling occurred, including early upregulation of oxidative stress markers. After 12 weeks of pressure load, lipidomics revealed significant decreases of myocardial diglycerides and cardiolipins, driven by (poly-)unsaturated forms. The decrease of cardiolipins was driven by its most abundant form, tetralinoleoylcardiolipin. Mitochondrial capacity for fatty acid oxidation preserved, while the capacity for glucose oxidation increased. CONCLUSION: RV dysfunction due to pressure load, is associated with decreased intracardiac unsaturated lipids, especially tetralinoleoylcardiolipin. This was accompanied with preserved mitochondrial capacity regarding fatty acids oxidation, with increased capacity for glucose oxidation, and early activation of oxidative stress. We suggest that early interventions should be directed towards preservation of lipid availability as possible mean in order to prevent RV failure.


Assuntos
Ventrículos do Coração/metabolismo , Metabolismo dos Lipídeos/fisiologia , Miocárdio/metabolismo , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita/fisiologia , Pressão Ventricular/fisiologia , Remodelação Ventricular/fisiologia , Animais , Modelos Animais de Doenças , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Masculino , Miocárdio/patologia , Estresse Oxidativo , Ratos , Ratos Wistar , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia
13.
J Cardiovasc Pharmacol ; 72(5): 214-221, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30212415

RESUMO

There is an increase in oxidative stress and apoptosis signaling during the transition from hypertrophy to right ventricular (RV) failure caused by pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). In this study, it was evaluated the action of copaiba oil on the modulation of proteins involved in RV apoptosis signaling in rats with PAH. Male Wistar rats (±170 g, n = 7/group) were divided into 4 groups: control, MCT, copaiba oil, and MCT + copaiba oil. PAH was induced by MCT (60 mg/kg intraperitoneally) and, 7 days later, treatment with copaiba oil (400 mg/kg by gavage) was given for 14 days. Echocardiographic and hemodynamic measurements were performed, and the RV was collected for morphometric evaluations, oxidative stress, apoptosis, and cell survival signaling, and eNOS protein expression. Copaiba oil reduced RV hypertrophy (24%), improved RV systolic function, and reduced RV end-diastolic pressure, increased total sulfhydryl levels and eNOS protein expression, reduced lipid and protein oxidation, and the expression of proteins involved in apoptosis signaling in the RV of MCT + copaiba oil as compared to MCT group. In conclusion, copaiba oil reduced oxidative stress, and apoptosis signaling in RV of rats with PAH, which may be associated with an improvement in cardiac function caused by this compound.


Assuntos
Apoptose/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Fabaceae , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/prevenção & controle , Monocrotalina , Miocárdio , Óleos de Plantas/farmacologia , Disfunção Ventricular Direita/prevenção & controle , Função Ventricular Direita/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Fármacos Cardiovasculares/isolamento & purificação , Modelos Animais de Doenças , Fabaceae/química , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Óleos de Plantas/isolamento & purificação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Disfunção Ventricular Direita/induzido quimicamente , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia , Proteína X Associada a bcl-2/metabolismo
14.
Biomed Res Int ; 2018: 3293584, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29511676

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disorder characterized by remodeling of the pulmonary vasculature and a rise in right ventricular (RV) afterload. The increased RV afterload leads to right ventricular failure (RVF) which is the reason for the high morbidity and mortality in PAH patients. The objective was to evaluate the therapeutic efficacy and antiremodeling potential of the phosphodiesterase type 5 (PDE5) inhibitor sildenafil and the soluble guanylate cyclase stimulator riociguat in a model of pressure overload RV hypertrophy induced by pulmonary artery banding (PAB). Mice subjected to PAB, one week after surgery, were treated with either sildenafil (100 mg/kg/d, n = 5), riociguat (30 mg/kg/d, n = 5), or vehicle (n = 5) for 14 days. RV function and remodeling were assessed by right heart catheterization, magnetic resonance imaging (MRI), and histomorphometry. Both sildenafil and riociguat prevented the deterioration of RV function, as determined by a decrease in RV dilation and restoration of the RV ejection fraction (EF). Although both compounds did not decrease right heart mass and cellular hypertrophy, riociguat prevented RV fibrosis induced by PAB. Both compounds diminished TGF-beta1 induced collagen synthesis of RV cardiac fibroblasts in vitro. Treatment with either riociguat or sildenafil prevented the progression of pressure overload-induced RVF, representing a novel therapeutic approach.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Hipertensão Pulmonar/tratamento farmacológico , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Citrato de Sildenafila/administração & dosagem , Disfunção Ventricular Direita/tratamento farmacológico , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/genética , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Coração/fisiopatologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Masculino , Camundongos , Inibidores da Fosfodiesterase 5/administração & dosagem , Pressão , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Remodelação Vascular/efeitos dos fármacos , Disfunção Ventricular Direita/genética , Disfunção Ventricular Direita/patologia
17.
Circ J ; 82(4): 1149-1154, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29353862

RESUMO

BACKGROUND: This study aimed to identify the clinical predictors of the degree of right ventricular (RV) myocardial fibrosis in patients with repaired tetralogy of Fallot (TOF) with special focus on the RV pressure load.Methods and Results:From April 2004 to March 2017, 30 patients with repaired TOF underwent pulmonary valve replacement and concomitant RV myocardial biopsy. The stroke volume ratio (RV stroke volume/left ventricular stroke volume), RV end-diastolic volume index, and right-to-left ventricular systolic pressure ratio were evaluated with respect to their prognostic value for the degree of RV myocardial fibrosis. Significant positive linear correlations were detected between the stroke volume ratio and the degree of RV myocardial fibrosis (P=0.003, r=0.52). Patients with a right-to-left ventricular systolic pressure ratio >0.45 showed a significantly greater degree of RV myocardial fibrosis under an equivalent stroke volume ratio. CONCLUSIONS: Under conditions of RV volume overload, a right-to-left ventricular systolic pressure ratio >0.45 was a predisposing factor for progression of RV myocardial fibrosis in patients with repaired TOF.


Assuntos
Fibrose/diagnóstico , Tetralogia de Fallot/cirurgia , Disfunção Ventricular Direita/patologia , Adolescente , Adulto , Feminino , Fibrose/fisiopatologia , Implante de Prótese de Valva Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Valva Pulmonar/cirurgia , Insuficiência da Valva Pulmonar/etiologia , Insuficiência da Valva Pulmonar/cirurgia , Estudos Retrospectivos , Volume Sistólico , Tetralogia de Fallot/complicações , Tetralogia de Fallot/patologia , Disfunção Ventricular Direita/etiologia , Pressão Ventricular
18.
J Thorac Cardiovasc Surg ; 155(5): 2024-2028.e1, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29370905

RESUMO

BACKGROUND: Right ventricular (RV) failure (RVF) is a vexing problem facing patients with various disease processes and carries a high mortality. RVF is a poorly understood phenomenon with limited treatment options. In mammalian fetal circulation, the right ventricle is the systemic ventricle. In neonates, however, the left ventricle assumes that role and gradually thickens compared with the right ventricle. This process, known as right ventricular involution (RVI), is poorly understood. We sought to define the time course and identify mechanisms involved in RVI. METHODS: Wild-type mice were bred and sacrificed on day of life (DOL) 1, 4, 8, 16, and 30 to evaluate left ventricular (LV) and RV wall thickness and apoptosis. A terminal deoxynucleotidyl transferase nick-end labeling assay and RNA sequencing were performed to measure changes during RVI. RESULTS: Morphometric analysis demonstrated the changes in RV and LV wall thickness occurring between DOL 1 and DOL 16 (RV:LV, 0.53:0.44; P = .03). In addition, apoptosis was most active early, with the highest percentage of apoptotic cells on DOL 1 (1.0%) and a significant decrease by DOL 30 (0.23%) (P = .02). Similarly, expression of the proapoptotic genes BCL2l11 and Pawr were increased at DOL 1, and the antiapoptotic genes Nol3 and Naip2 were significantly increased at DOL 30. CONCLUSIONS: RVI is a misnomer, but significant changes occur early (by DOL 16) in neonatal mouse hearts. Apoptosis plays a role in RVI, but whether manipulation of apoptotic pathways can prevent or reverse RVI is unknown and warrants further investigation.


Assuntos
Ventrículos do Coração/fisiopatologia , Hipertrofia Ventricular Direita/fisiopatologia , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita , Remodelação Ventricular , Fatores Etários , Animais , Animais Recém-Nascidos , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fatores de Tempo , Disfunção Ventricular Direita/genética , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia , Função Ventricular Esquerda
19.
Circulation ; 137(17): 1796-1810, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29246894

RESUMO

BACKGROUND: We hypothesized that pulmonary venous hypertension in heart failure (HF) leads to predominate remodeling of pulmonary veins and that the severity of venous remodeling is associated with the severity of pulmonary hypertension (PH) in HF. METHODS: Patients with HF (n=108; 53 preserved and 55 reduced ejection fraction) with PH (HF-PH; pulmonary artery systolic pressure [PASP] ≥40 mm Hg) were compared to normal controls (n=12) and patients with primary pulmonary veno-occlusive disease (PVOD; n=17). In lung specimens from autopsy (control, HF-PH, and 7 PVOD) or surgery (10 PVOD), quantitative histomorphometry was performed in all analyzable arteries (n=4949), veins (n=7630), and small indeterminate vessels (IV; n=2168) to define percent medial thickness (arteries) and percent intimal thickness (%IT) (arteries, veins, and IV) relative to external diameter. RESULTS: The average arterial percent medial thickness (control, 6.9; HF-PH, 11.0; PVOD, 15.0), arterial %IT (control, 4.9; HF-PH, 14.9; PVOD, 31.1), venous %IT (control, 14.0; HF-PH, 24.9; PVOD, 43.9), and IV %IT (control, 10.6; HF-PH, 25.8; PVOD, 50.0) in HF-PH were higher than controls (P<0.0001 for all) but lower than PVOD (P≤0.005 for all). PASP (mm Hg) was lower in HF-PH (median, 59 [interquartile range, 50-70]) than in PVOD (median, 91 [interquartile range, 82-103]). PASP correlated with arterial percent medial thickness (r=0.41) and arterial %IT (r=0.35) but more strongly with venous %IT (r=0.49) and IV %IT (r=0.55) (P<0.0001 for all). Associations between PASP and venous or IV %IT remained significant after adjusting for arterial percent medial thickness and %IT and did not vary by HF type. In patients with right heart catheterization (30 HF-PH, 14 PVOD), similar associations between the transpulmonary gradient and pulmonary vascular remodeling existed, with numerically stronger associations for venous and IV %IT. Although the PASP was slightly higher in patients with HF-PH with right ventricular dysfunction, pulmonary vascular remodeling was not more severe. Pulmonary vascular remodeling severity was associated with reductions in the diffusing capacity of the lungs. CONCLUSIONS: In HF, PH is associated with global pulmonary vascular remodeling, but the severity of PH correlates most strongly with venous and small IV intimal thickening, similar to the pattern observed in PVOD. These findings expand our understanding of the pathobiology of PH in HF.


Assuntos
Pressão Arterial , Insuficiência Cardíaca/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Pulmão/irrigação sanguínea , Artéria Pulmonar/fisiopatologia , Veias Pulmonares/fisiopatologia , Volume Sistólico , Remodelação Vascular , Pressão Venosa , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita , Idoso , Idoso de 80 Anos ou mais , Autopsia , Estudos de Casos e Controles , Feminino , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/patologia , Humanos , Hipertensão Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/patologia , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/patologia , Capacidade de Difusão Pulmonar , Veias Pulmonares/diagnóstico por imagem , Veias Pulmonares/patologia , Sistema de Registros , Índice de Gravidade de Doença , Disfunção Ventricular Direita/diagnóstico por imagem , Disfunção Ventricular Direita/patologia
20.
Int J Cardiovasc Imaging ; 34(1): 55-65, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28357724

RESUMO

Right ventricular (RV) fibrosis is increasingly recognized as the underlying pathological substrate in a variety of clinical conditions. We sought to employ cardiac magnetic resonance (CMR) techniques of strain imaging and longitudinal relaxation time (T1) mapping to better examine the relationship between RV function and structure. Our aim was to initially evaluate the feasibility of these techniques to evaluate the right ventricle. We then sought to explore the relationship between RV function and underlying fibrosis, along with examining the evolution of RV remodeling according to the amount of baseline fibrosis. Echocardiography was performed in 102 subjects with non-ischemic cardiomyopathy. Right ventricular parameters were assessed including: fractional area change (FAC) and longitudinal strain. The same cohort underwent CMR. Post-contrast T1 mapping was performed as a marker of fibrosis with a Look-Locker technique using inversion recovery imaging. Mid-ventricular post-contrast T1 values of the RV free wall, RV septum and lateral LV were calculated using prototype analysis software. Biventricular volumetric data including ejection fraction was measured by CMR using a cine short axis stack. CMR strain analysis was also performed to assess 2D RV longitudinal and radial strain. Simultaneous biochemical and anthropometric data were recorded. Subjects were followed over a median time of 29 months (IQR 20-37 months) with echocardiography to evaluate temporal change in RV FAC according to baseline post-contrast T1 values. Longitudinal data analysis was performed to adjust for patient loss during follow-up. Subjects (62% men, 51 ± 15 years) had mild to moderately impaired global RV systolic function (RVEF = 39 ± 15%; RVEDV = 187 ± 69 ml; RVESV = 119 ± 68 ml) and moderate left ventricular dysfunction at baseline (LVEF 30 ± 17%). Good correlation was observed between mean LV and RV post-contrast T1 values (r = 0.652, p < 0.001), with similar post-contrast T1 values maintained in both the RV free wall and septum (r = 0.761, p < 0.001). CMR RVEF demonstrated a proportional correlation with echocardiographic measures of RV longitudinal function and CMR RV strain (longitudinal r = -0.449, p = 0.001; radial r = -0.549, p < 0.001). RVEF was related to RV post-contrast T1 values, particularly in those with RV dysfunction (free wall T1 r = 0.259 p = 0.027; septal T1 r = 0.421 p < 0.001). RV strain was also related to RV post-contrast T1 values (r = -0.417, p = 0.002). Linear regression analysis demonstrated strain and post-contrast T1 values to be independently associated with RVEF. Subjects with severe RV dysfunction (CMR RVEF <25%) demonstrated lower RV CMR strain (longitudinal p = 0.018; radial p < 0.001), RV T1 values (free wall p = 0.013; septum <0.001) and RV longitudinal echocardiography parameters despite no difference in afterload. During follow-up, those with RV free wall post-contrast T1 values ≥ 350 ms demonstrated ongoing improvement in FAC (Δ6%), whilst values <350 ms were associated with deterioration in RV function (ΔFAC = -5%) (p = 0.026). CMR provides a comprehensive method by which to evaluate right ventricular function. Post-contrast T1 mapping and CMR strain imaging are technically feasible and provide incremental information regarding global RV function and structure. The proportional relationship between RV function and post-contrast T1 values supports that myocardial fibrosis is a causative factor of RV dysfunction in NICM, irrespective of RV afterload. This same structural milieu also appears integral to the propensity for both positive and negative RV remodeling long-term, suggestive that this is also determined by the degree of underlying RV fibrosis.


Assuntos
Cardiomiopatias/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética , Disfunção Ventricular Direita/diagnóstico por imagem , Função Ventricular Direita , Adulto , Idoso , Fenômenos Biomecânicos , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Ecocardiografia Doppler , Estudos de Viabilidade , Feminino , Fibrose , Humanos , Interpretação de Imagem Assistida por Computador , Modelos Lineares , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Contração Miocárdica , Miocárdio/patologia , Valor Preditivo dos Testes , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/patologia , Disfunção Ventricular Direita/fisiopatologia , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA